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Abstract—This paper presents a comprehensive review
and implementation of the Kolmogorov-Arnold Network
(KAN) on various datasets. The Kolmogorov-Arnold Rep-
resentation Theorem provides the theoretical foundation
for KAN, enabling the decomposition of complex multi-
variate continuous functions into simpler univariate func-
tions. We explore the architecture of KAN, emphasizing
its use of B-splines for stable and bounded polynomial
approximations. We implement and test KAN on the
MNIST, CIFAR-10, Intracranial Hemorrhage, and ARAS-
CaSe datasets, comparing its performance against tradi-
tional Multi-Layer Perceptrons (MLPs) and convolutional
neural networks (CNNs). Our experiments demonstrate
significant improvements in accuracy and convergence
speed for KAN models, particularly in image classification
and medical image segmentation tasks. We also investigate
the integration of KAN layers into CNN architectures,
highlighting the potential of KAN to enhance the perfor-
mance of deep learning models in various applications. Our
results underscore the robustness and efficiency of KAN,
paving the way for its broader adoption in the machine-
learning community.

I. INTRODUCTION

A. Kolmogorov-Arnold Network Architecture
The Kolmogorov-Arnold Representation Theorem,

established by mathematicians Andrey Kolmogorov and
Vladimir Arnold, states that any multivariate continuous
function can be decomposed into a finite sum of contin-
uous univariate functions and addition operations. This
theorem forms the mathematical foundation of KAN,
suggesting that complex functions can be broken down
into simpler, more manageable components.

f(x) = f(x1, . . . , xn) =

2n+1∑
q=1

Φq

(
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)
(1)

y = F (X1, X2, X3, . . . , Xn) (2)

1. Pass input features through uni-variate functions

φ1(X1) φ2(X2) φ3(X3) . . . φn(Xn) (3)

2. Sum these up

φ1(X1)+φ2(X2)+φ3(X3)+. . .+φn(Xn) =

n∑
q=1

φq(Xq)

(4)

3. Pass the sum through another function

f

(
n∑

q=1

φq(Xq)

)
(5)

We can represent the inner functions as a matrix of
φ functions with dimensions n × m, populated with
different activation functions. Additionally, there is an
input vector containing n features. The input vector will
pass through these activation functions. Each of these
functions is a simple polynomial curve dependent on
the input x.

Fig. 1: A sample image.

Fig. 2: A sample image.

When the values of the variables a, b, and c change,
the shape of the polynomial diagram and the activation
value will be affected. These are learnable parameters
that determine the form of the activation function. We
will update these values through backpropagation to
optimize the network’s predictions.

After performing a column-wise sum of the matrix,
we apply a series of univariate operations. The process is
as follows: given two input features and an output layer
of size five, each output is passed through five different
parameterized univariate activation functions. We then
sum the corresponding activations to obtain the features



Fig. 3: A sample image.

of each output node. This entire operation constitutes
one KAN layer with an input size of 2 and an output
size of 5.

Similar to Multi-Layer Perceptrons (MLPs), we can
stack multiple KAN layers to create a deeper neural
network. The output of one layer serves as the input for
the next layer.

Fig. 4: A sample image.

The parameters of each activation spline can be
trained using backpropagation and gradient descent.
While fixed activation functions are employed at the
nodes in MLPs, learnable activation functions are uti-
lized along the edges in KANs and are summed up at
the nodes.

Fig. 5: A sample image.

In MLPs, the learnable parameters, which are weights
and biases, are linear. In contrast, KANs do not use
linear weight matrices. Instead, each weight parameter
is replaced by a learnable nonlinear activation function
called phi.

Higher-order polynomials tend to escalate rapidly
with small changes in x, making them practically diffi-
cult and unstable to train in neural networks. Therefore,
B-splines, which are more stable and bounded, are used
instead.

Fig. 6: Basis Function in B-Splines

Fig. 7: B-Spline Example

B. B-Splines

B-splines, or Basis splines, are a family of piecewise-
defined polynomials used for smooth curve represen-
tation and approximation. They are defined over a
partition of the domain called a knot vector T =
{t0, t1, . . . , tn+p+1}, where ti are the knots and p is the
degree of the spline. A B-spline of degree p is defined by
a set of basis functions Ni,p(x), which are non-negative
and have local support. The B-spline curve is given by:

C(x) =

n∑
i=0

ciNi,p(x),

where ci are the control points and Ni,p(x) are the
B-spline basis functions of degree p. Figure 6 illustrate
the basis functions that are used in the KAN model to
approximate the non-linear function in the edges.

The degree vector P often denotes the degree of the
spline and helps in constructing the basis functions. The
Figure 7 indicates a sample of B-splines in approximat-
ing a curve between some data points. [1], [2]



II. DATASETS

A. MNIST Dataset

The MNIST [3] dataset is a collection of handwritten
digits that serves as a benchmark for image classification
algorithms. It was created by Yann LeCunet al. and
has become a standard for testing new algorithms in
the field of machine learning. The dataset consists of
70,000 grayscale images of handwritten digits from 0
to 9, split into a training set of 60,000 images and a
test set of 10,000 images. Each image is 28x28 pixels
in size, making it a relatively simple and small dataset
that is easy to work with. The images are in grayscale,
and each pixel value ranges from 0 to 255, where 255
represents a white pixel and 0 represents a black pixel.
Figure 8 shows some sample images from the MNIST
dataset.

Fig. 8: Sample images from the MNIST dataset.

B. CIFAR-10 Dataset

The CIFAR-10 [4] dataset, created by Alex
Krizhevsky, is another widely used benchmark for image
classification tasks. Unlike MNIST, which consists of
grayscale images of handwritten digits, CIFAR-10 com-
prises colored images in 10 different classes. The dataset
contains 60,000 32x32 color images, with each class
having 6,000 images. The classes represent objects such
as airplanes, automobiles, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. Figure 9 are some sample
images from the CIFAR-10 dataset.

C. Intracranial Hemorrhage Dataset

The dataset titled “Computed Tomography Images for
ICH Detection and Segmentation” [5], which is publicly
available on PhysioNet [6], provides CT scan radiogra-
phy images related to Intracranial Hemorrhage (ICH)
situation and the corresponding label for classification
and segmentation task. The CT scans were collected
between February and August 2018 at Al Hilla Teaching
Hospital, Iraq. This dataset comprises 82 non-contrast
CT scans, each containing 34 slices with a 5 mm slice
thickness. Of the subjects, 56% (46 patients) were male,
and 44% (36 patients) were female. The dataset includes
individuals ranging in age from 1 day to 72 years, with

Fig. 9: Sample images from the CIFAR-10 dataset.

an average age of 27.8 ± 19.5 years. The broad age
range impacts the skull’s scale and shape observed in
the CT scans and this variation

could affect the performance of the deep learning
model. Out of the 82 patients, 36 were diagnosed with
ICH. For data labeling, each slice was reviewed by two
radiologists to determine the presence of hemorrhage or
fractures [7].

As illustrated in Figure 10, the dataset consists of
2,814 slices, including 2,496 healthy slices and 318
slices with hemorrhage. This distribution exhibits a
significant imbalance problem at the slice-level. How-
ever, at the patient-level, this imbalance problem is not
observed. The imbalance at the slice-level is attributable
to the fact that in patients with hemorrhage, many slices
are healthy; in other words, hemorrhage occurs in only
a few slices of a patient with ICH.

(a) (b)

Fig. 10: Distribution of slices (a) and patients (b) in the
dataset.

During data collection, 7 CT scans from patients aged
59 to 65 were missed. Kyung et al. suggest that the
CT scans of patients 58 and 79 exhibit poor image
quality according to radiologist opinions and should be
eliminated [8]. Consequently, 73 CT scans in NIFTI
format are currently available. The CT scan images



conform to the Hounsfield Unit scale, thus a windowing
operation should be applied to the slices. The brain
window is the target window in this research, with the
window level set to 40 and the window width set to 120
[5].

D. ARAS-CaSe Dataset

The ARAS-CaSe [9] dataset is a comprehensive
resource for capsulorhexis segmentation in cataract
surgery, addressing gaps in existing datasets. It consists
of 533 annotated frames selected from over 800 surgical
videos, ensuring diversity and high-quality represen-
tation of the surgical regions. The dataset includes
annotations for cornea and needle using three methods:
two-class occlusion-aware, three-class occlusion-aware,
and two-class occlusion-unaware. ARAS-CaSe dataset
in shown in Figure 11

III. EXPERIMENTS

A. Multi-Layer KAN vs. Multi-Layer perceptron

The original KAN implementation is available in the
pykan [10] repository. In the first step, a multi-layer
KAN (MLKAN) has been established with this reposi-
tory to train the network but this repository is inefficient
and we can’t establish the model properly on the GPU,
thus other implementations of KAN are candidates to
create an MLKAN model in python. Awsome-KAN [11]
repository is a comprehensive collection of available
implementations and extensions of KAN paper thus
Efficient-KAN [12], Fast-KAN [13], and Faster-KAN
[14] has been choose to implement a MLKAN model
in pytorch.

1) Efficient KAN: Efficient-KAN The repository en-
hances the performance and speed of KAN by ad-
dressing memory and computational inefficiencies in
the original implementation. Originally, expanding all
intermediate variables to perform different activation
functions required significant memory and processing
power. By reformulating the computation to activate
inputs with different basis functions (B-splines) and then
combining them linearly, the memory cost is reduced
and the process is streamlined into a straightforward
matrix multiplication, efficient for both forward and
backward passes.
It also adjusts regularization methods for compatibility
and includes an option to toggle learnable activation
function scales. [12]

2) Fast KAN: Fast-KAN improved the performance
of KAN layers by replacing the 3rd-order B-spline basis
with Gaussian Radial Basis Functions (RBFs) which the
formula is indicated in Equation 6.

bi(u) = exp

(
−
(
u− ui

h

)2
)

(6)

This change makes the network significantly faster,
reducing the forward time compared to the efficient
KAN, while maintaining or slightly improving accuracy.

The simplification comes from the ease of calculating
RBFs while the grids are uniform. The approximate of
the B-spline basis by RBF is illustrated in Figure 12.
Additionally, LayerNorm is used to scale inputs, elim-
inating the need for grid adjustments. This approach
also suggests that KANs can be seen as a type of RBF
Network, bridging the concepts of RBF Networks and
KANs. [13]

3) Faster KAN: Faster-KAN enhances the perfor-
mance of KAN, Efficient-KAN, and FastKAN by ex-
perimenting with alternative basis functions, different
exponent values, and varying the h parameter. One of
the key improvements involves using the Reflectional
Switch Activation Function (RSWAF) which uses the
Equation 7 formula instead of RBF.

bi(u) = 1−
(
tanh

(
u− ui

h

))2

(7)

Figure 16 illustrates the RSWAF function, approximat-
ing the B-spline basis, while being computationally
efficient with uniform grids. The latest version of the im-
plementation allows users to choose whether the inverse
of the denominator (1/h) should be a learnable param-
eter, although this feature is still experimental. Results
show that RSWAF functions can closely approximate
a 3rd-order B-spline basis for a network configuration
of [28x28, 256, 10] in efficient-KAN, suggesting their
potential as a viable alternative to traditional basis
functions used in KANs. [14]

Table I indicate the comparison between the per-
formance of different extensions and implementations
of KAN [15]. Based on this table and by manually
comparing the metrics of a sample structure, the Fast-
KAN implementation has been chosen for further ex-
periments since Fast-KAN is sufficiently fast and also
approximates B-splines better than Faster-KAN.

B. Trial on MNIST

In this section, a grid search has been performed to
obtain the best hyperparameters to train an MLKAN
model on the MNIST dataset. This hyperparameter con-
tains the shape of the input image and changes between
14×14 and 28×28, the number of grids to estimate the
B-spline that a number between 3, 5, 50, 100 is chosen
for training the model, grid range that either is (−1, 1) or
(−2, 2), Normalize the input vector, and the structure of
the model that is chosen between [inupt_size, 10],
[inupt_size, 64, 10], [inupt_size, 64, 16, 10].
To provide a proper comparison between the perfor-
mance of MLKAN and MLP, 3 MLP models with
the input shape of 14 × 14 and the structures that are
mentioned for MLKAN models.

Table II shows the 20 configurations of training
MLKAN which obtained the best performance on the
MNIST dataset. Regarding that, the claim in the paper
has been proved for input vectors with small lengths that
increasing the parameters in each layer, will increase the



Fig. 11: ARAS-CaSe Dataset

TABLE I: Comparison of performance different implementation of KAN

Implementation forward backward forward backward num params num trainable params
effkan-cpu 31.98 ms 44.49 ms nan GB nan GB 10010000 10010000
effkan-gpu 4.76 ms 4.54 ms 0.13 GB 0.19 GB 10010000 10010000
fast-kan-cpu 9.96 ms 17.06 ms nan GB nan GB 10015019 10015001
fast-kan-gpu 1.44 ms 2.13 ms 0.11 GB 0.14 GB 10015019 10015001
faster-kan-cpu 10.58 ms 15.42 ms nan GB nan GB 10014022 10014000
faster-kan-gpu 1.20 ms 2.01 ms 0.12 GB 0.14 GB 10014022 10014000
mlp-cpu 9.77 ms 7.27 ms nan GB nan GB 10020001 10020001
mlp-gpu 0.49 ms 1.07 ms 0.10 GB 0.13 GB 10020001 10020001
pykan-cpu 15.59 ms 17.53 ms nan GB nan GB 2431 1551
pykan-gpu 50.56 ms 93.93 ms 0.02 GB 0.02 GB 2431 1551

Fig. 12: Comparison of RBF and B-splines

Fig. 13: Comparison of RSWAF and B-splines

performance more efficiently than increasing the number
of layers. Moreover, the grid range does not change
the performance significantly thus we can neglect its
effect on the training data, but the number of grids
and the image size will enhance the model performance
significantly due to the normalization situation in the
input vector, the best number values for this parameters
are not predictable. As indicated in the last two columns
in the table, the conversion speed of this model is
remarkably high.
Table III shows the comparison of the performance of
MLP and MLKAN on the MNIST dataset. The MLKAN
model increased the accuracy metric on the MNIST up
to 12 percent which is a considerable improvement for
a model with few parameters. Also this model increased
the speed of convergence.

The future work for this experiment contains using a
validation set during training the model to examine the
potential of overfitting in MLKAN, also assessing the
performance of MLKAN and MLP models on external
datasets could examine the potential of generalization
of models.

C. Trial on Intracranial Hemorrhage Dataset

The classification of ICH lesions using MLKAN has
been achieved through max-pooling the final layer of
a ResNet50 model, which has been trained with an
MLP head on the ICH dataset as a feature extractor.
For this purpose, MLKAN was established instead of
MLP layers, and the training process tuned the weights
of the MLKAN model. A grid search was performed



TABLE II: The first 20 configuration on MNIST
layers hidden img size grid min grid max num grids normalize best train loss best val loss best train acc best val acc total epochs epochs to //0.5 acc epochs to 0.9 acc
(784, 64, 10) 28 -2 2 10 TRUE 0.053914 0.096377 0.987183 0.9702 65 2 10
(196, 64, 10) 14 -2 2 5 FALSE 0.080792 0.101838 0.978393 0.9701 75 2 9
(196, 64, 16, 10) 14 -1 1 5 TRUE 0.071126 0.100345 0.980108 0.9699 63 3 11
(196, 64, 10) 14 -2 2 10 TRUE 0.068108 0.097892 0.981953 0.9699 71 2 9
(196, 64, 16, 10) 14 -1 1 3 FALSE 0.073697 0.102042 0.980191 0.9697 76 4 11
(784, 64, 16, 10) 28 -1 1 5 TRUE 0.065518 0.101526 0.982945 0.9695 63 2 11
(784, 64, 10) 28 -2 2 5 FALSE 0.05638 0.09918 0.986428 0.9692 67 2 9
(196, 64, 10) 14 -1 1 5 TRUE 0.087578 0.107325 0.975562 0.9682 73 2 11
(784, 64, 10) 28 -2 2 3 FALSE 0.083164 0.10603 0.976666 0.9681 72 3 12
(196, 64, 10) 14 -2 2 5 TRUE 0.100513 0.110111 0.972459 0.9681 84 4 13
(196, 64, 16, 10) 14 -1 1 3 TRUE 0.102107 0.110764 0.970434 0.9677 78 4 16
(196, 64, 10) 14 -1 1 5 FALSE 0.077266 0.11894 0.980093 0.967 72 3 11
(196, 64, 10) 14 -1 1 3 FALSE 0.097135 0.113742 0.973002 0.9666 85 3 12
(196, 64, 16, 10) 14 -1 1 10 TRUE 0.060211 0.110875 0.98424 0.9665 56 3 10
(784, 64, 10) 28 -1 1 3 FALSE 0.073445 0.109347 0.980168 0.9665 71 2 11
(784, 64, 10) 28 -2 2 5 TRUE 0.095391 0.115146 0.97391 0.9658 67 3 11
(784, 64, 10) 28 -1 1 5 TRUE 0.079959 0.117288 0.978315 0.9658 77 2 12
(196, 64, 10) 14 -1 1 10 TRUE 0.062033 0.111746 0.984936 0.9656 69 2 9
(196, 64, 16, 10) 14 -1 1 5 FALSE 0.055092 0.115447 0.986746 0.9644 63 3 12
(784, 64, 16, 10) 28 -1 1 5 FALSE 0.03956 0.11598 0.992116 0.9644 57 2 11

TABLE III: The comparison of MLKAN and MLP on
MNIST

Model Hidden Layers Accuracy on Test Number of Epoch
MLP [196, 10] 0.84 300
MLKAN [196, 10] 0.94 86
MLP [196, 64, 10] 0.85 300
MLKAN [196, 64, 10] 0.97 74
MLP [196, 64, 16, 10] 0.86 300
MLKAN [196, 64, 16, 10] 0.97 62

to obtain the best hyperparameters for training the
MLKAN model on the ICH dataset.

In the first step, a test subset was chosen at the patient
level, and then the features of slices were extracted
from ResNet50 to enable MLKAN to classify the ICH
slices from healthy ones. The hyperparameters in the
grid search included the number of grids to estimate
the B-spline, which was chosen from the set 3, 5, 50,
100, and the model structure, which was chosen from
the following configurations: [2048, 1], [2048, 10, 1],
[2048, 512, 1], [2048, 1028, 256, 1], [2048, 256, 64,
1], [2048, 512, 128, 1], [2048, 512, 128, 32, 1], [2048,
1024, 256, 64, 1], [2048, 1024, 512, 256, 128, 1], [2048,
512, 128, 32, 8, 1], [2048, 512, 64, 256, 1288, 1].
For the second trial of training the MLKAN on the
ICH dataset, a 5-fold cross-entropy was applied to the
dataset, and the positive instances were augmented with
a ratio of 3.3. In this phase, the hyperparameters were
chosen more accurately based on the test loss from the
previous section. This grid search included the number
of grids to estimate the B-spline, chosen from the set
3, 5, 7, 10, a weighted loss of 2 and 4 for positive
instances, and the model structure, chosen from the
following configurations: [2048, 64, 1], [2048, 512, 128,
1], [2048, 1024, 256, 64, 1], [2048, 512, 128, 32, 1],
[2048, 512, 128, 32, 8, 1], [2048, 512, 64, 256, 128, 1],
[2048, 1024, 512, 256, 128, 1].

Table IV shows the results for training the model
on the ICH dataset while the dataset is split into two
subsections of train and test. These results do not
show significant improvement in accuracy metric in
comparison with the literature accuracy. based on these
results, the more accurate hyperparameters have been
chosen for training the 5-fold cross-validation.
In the next step, the training with the 5-fold cross-

Fig. 14: F1 Score vs. Threshold

validation has been performed and since the weight of
loss for each train is different, a simple BCE loss is
considered as the global loss parameter to assess the
performance of models. Table V shows the best perfor-
mance of models on the validation sets, regarding it the
model with the [2048, 1024, 256, 64, 1] architecture has
been chosen for further examinations. The chosen model
is trained on the folds and the best epoch of each mode
selected by the loss value on the validation set and the
voting mechanism applied to them. Figure 14 shows the
performance of each fold and voting mechanism on the
test set and there is no improvement in comparison to
MLP layers. Figure 15 shows that this model misses
more instances in comparison with MLP layers. In
conclusion, it seems that MLKAN performs better tasks
for data with a small number of inputs.

The future work for this experiment contains splitting
the folds in patient-level scope to assess the overfitting
issue on the validation set. Also training the MLKAN
in an End-to-End approach is preferable to obtain the
effect of KAN layers on the training of a CNN model.

IV. CNN KAN

We utilized the CNN-KAN GitHub [16] for im-
plementing the Convolutional Kolmogorov-Arnold Net-
works (Convolutional KANs) described in the accom-
panying paper [17]. This repository provided the code



TABLE IV: The first 20 configurations on the ICH dataset for splitting the dataset to train and test

Hidden Layers Num Grids Best Train Loss Best Test Loss Best Train Acc Best Test Acc Epoch
(2048, 512, 128, 1) 5 0.060924 0.503722 0.989232 0.921875 30
(2048, 512, 128, 32, 1) 10 0.035903 0.507132 1 0.91875 52
(2048, 1) 3 1.063245 1.287778 0.778536 0.91875 29
(2048, 1024, 256, 64, 1) 3 0.09449 0.479004 0.983848 0.917188 28
(2048, 1028, 256, 1) 5 0.031139 0.658408 0.992462 0.915625 28
(2048, 1024, 256, 64, 1) 10 0.034609 0.537252 1 0.915625 39
(2048, 1028, 256, 1) 10 0.007805 0.606771 1 0.915625 31
(2048, 512, 1) 20 0.00289 0.844236 1 0.914063 28
(2048, 512, 128, 1) 3 0.101748 0.468515 0.982771 0.914063 28
(2048, 1024, 512, 256, 128, 1) 3 0.090147 0.456397 0.983848 0.914063 26
(2048, 512, 64, 256, 1288, 1) 5 0.015296 0.848396 0.997487 0.9125 29
(2048, 64, 1) 30 0.044446 0.579466 0.994257 0.9125 36
(2048, 256, 64, 1) 3 0.144993 0.486096 0.977746 0.910937 29
(2048, 1028, 256, 1) 3 0.141208 0.623723 0.981694 0.910937 27
(2048, 512, 128, 32, 1) 3 0.098838 0.456384 0.983489 0.910937 29
(2048, 512, 128, 32, 1) 5 0.066154 0.465782 0.98636 0.910937 34
(2048, 1024, 256, 64, 1) 5 0.030005 0.500429 0.995334 0.910937 28
(2048, 1024, 512, 256, 128, 1) 5 0.020189 0.48607 0.998923 0.910937 32
(2048, 512, 128, 32, 8, 1) 5 0.152308 0.437507 0.98636 0.909375 43
(2048, 512, 128, 1) 20 0.006973 0.577016 1 0.909375 56

TABLE V: The first 20 configurations on the ICH dataset for 5-fold-cross-validation

Model Structure Grid Num Weight Best Average
Val Loss

Best Global
Average Val Loss

Best Average
Val Accuracy

Best Global
Test Loss

Best Test
Accuracy

2048, 1024, 256, 64, 1 10 2 0.017461504 0.014333 0.996614 0.241029 0.9225
2048, 1024, 256, 64, 1 10 4 0.036286868 0.025592 0.996628 0.23747 0.922187
2048, 1024, 256, 64, 1 3 2 0.104714902 0.065235 0.979987 0.23206 0.923125
2048, 1024, 256, 64, 1 3 4 0.032171533 0.024149 0.997124 0.22693 0.923125
2048, 1024, 256, 64, 1 5 2 0.018391454 0.016081 0.997103 0.256471 0.922187
2048, 1024, 256, 64, 1 5 4 0.022752248 0.016763 0.996614 0.247552 0.922812
2048, 1024, 256, 64, 1 7 2 0.021816487 0.016254 0.995675 0.2157 0.923438
2048, 1024, 256, 64, 1 7 4 0.023228022 0.017508 0.997103 0.216536 0.9225
2048, 1024, 512, 256, 128, 1 10 2 0.019457832 0.015526 0.996626 0.209025 0.925625
2048, 1024, 512, 256, 128, 1 10 4 0.070145403 0.045674 0.995159 0.210852 0.925
2048, 1024, 512, 256, 128, 1 3 2 0.021470506 0.017471 0.997591 0.209437 0.925313
2048, 1024, 512, 256, 128, 1 3 4 0.034717674 0.029203 0.996626 0.212343 0.9225
2048, 1024, 512, 256, 128, 1 5 2 0.013685671 0.010417 0.997591 0.213766 0.925625
2048, 1024, 512, 256, 128, 1 5 4 0.065259795 0.035681 0.99425 0.240313 0.923438
2048, 1024, 512, 256, 128, 1 7 2 0.017807907 0.014353 0.997591 0.212815 0.924375
2048, 1024, 512, 256, 128, 1 7 4 0.025217444 0.018876 0.996616 0.210845 0.924688
2048, 512, 128, 1 10 2 0.016161421 0.01339 0.99663 0.29069 0.9225
2048, 512, 128, 1 10 4 0.023245117 0.016201 0.996152 0.269668 0.916875
2048, 512, 128, 1 3 2 0.018316118 0.016398 0.995648 0.304341 0.924688
2048, 512, 128, 1 3 4 0.025356819 0.017691 0.996714 0.339419 0.919687

Fig. 15: Confusion Matrix of Voting Mechanism

necessary to build and test these innovative neural
network architectures, which integrate the non-linear
activation functions of Kolmogorov-Arnold Networks
(KANs) with convolutional layers. The aim was to
validate their performance on the MNIST dataset and
compare it against traditional Convolutional Neural Net-
works (CNNs).

Different experiments were conducted to analyze the
performance of various models employing KAN Con-
volutional Layers compared to a classical convolutional
neural network, and these experiments are described.
Two datasets were utilized during experimentation: The
MNIST dataset, which was the focus of the main paper,
and the CIFAR-10 dataset, which was mentioned as
a potential future work in the original article, have
been utilized in this project. Each architecture was
trained on both datasets to generate the models used
for performance comparison. The proposed architectures
incorporated a mix of Linear, Kan Linear, Kan Con-



Fig. 16: Convolutional KAN and standard architectures
used in experimentss

TABLE VI: Comparison of accuracy, precision, recall,
F1 score and parameter count for the proposed models
tested on the MNIST Dataset

Model Accuracy percision Recall F1 Scre Params
MNIST Dataset
KKAN(Small) 98.67 98.67 98.65 98.66 94.87K
Conv & KAN 98.25 98.24 98.24 98.25 95K

KAN Conv & 2 Layer MLP 98.48 98.48 98.47 98.47 164K
CNN (Medium) 99.04 99.03 99.02 99.03 157K

CNN (Small) 97.80 97.80 97.78 97.79 2.7K
1 Layer MLP 92.32 92.22 92.21 92.20 7.9K

volutional, and Convolutional layers.Figure 16 shows
different architectures used:

A. CNN result

This section presents an analysis of the performance
of the various proposed models in the previously de-
scribed experiments.

1) MNIST Dataset: Table VI provides an analysis
of performance metrics, including accuracy, precision,
recall, F1 score, number of parameters, and training
time per epoch for various models tested on the MNIST
dataset. This analysis aids in understanding the effi-
ciency and effectiveness of each model configuration.

2) CIFAR Dataset: Similar to Table VI with the
MNIST dataset, Table VII presents a comparison of
accuracy, precision, recall, F1 score, parameter count,
and training time per epoch for the proposed models
tested on the CIFAR-10 dataset.

TABLE VII: Comparison of accuracy, precision, recall,
F1 score and parameter count for the proposed models
tested on the CIFAR-10 Dataset

Model Accuracy percision Recall F1 Scre Params
CIFAR-10 Dataset

KKAN(Small) 48 92 48.26 48.92 48.37 94.87K
Conv & KAN 44.71 44.31 44.71 44.33 95K

KAN Conv & 2 Layer MLP 48.02 47.43 48.02 47.57 164K
CNN (Medium) 49.81 49.32 49.81 49.36 157K

CNN (Small) 41.26 40.82 41.26 40.81 2.7K
1 Layer MLP 30.76 30.00 30.76 30.05 7.9K

V. SEGMENTATION KAN

In this work, we utilized the repository U-KAN [18]
developed by the CUHK-AIM Group. U-KAN enhances
the U-Net architecture by incorporating Kolmogorov-
Arnold Network (KAN) layers, optimizing medical im-
age segmentation and generation tasks.

”U-KAN Makes Strong Backbone for Medical Image
Segmentation and Generation,” explores the integration
of Kolmogorov-Arnold Networks (KANs) into the U-
Net architecture to enhance its performance in medical
image segmentation and generation tasks. U-Net, a
widely used model for image segmentation, is aug-
mented with KAN layers to create a new model named
U-KAN. This model leverages non-linear learnable ac-
tivation functions inspired by the Kolmogorov-Arnold
representation theorem, aiming to improve both accu-
racy and interpretability over traditional linear meth-
ods. The authors validate the U-KAN model through
rigorous benchmarks in medical image segmentation,
demonstrating that it achieves higher accuracy with re-
duced computational cost compared to existing methods.
Additionally, U-KAN’s potential as an alternative U-
Net noise predictor in diffusion models is explored,
showing promising results in generating task-oriented
model architectures. U-KAN architecture is shown in
Figure 18.

Fig. 17: Overview of U-KAN pipeline.

We tested U-KAN on the provided datasets (BUSI,
GLAS, and CVC-ClinicDB) and our own dataset. The
results demonstrated significant improvements in seg-
mentation accuracy with reduced computational costs.
The adaptability of U-KAN in different medical imaging
contexts underscores its potential as a robust backbone
for medical image analysis.

A. Segmentation Results

To evaluate the performance of our segmentation
model, we conducted an experiment over 10 epochs,
measuring the model’s accuracy using Intersection over
Union (IoU) and Dice Coefficient as the primary met-
rics. These metrics are widely used in image segmen-
tation tasks to assess the overlap between the predicted
segmentation mask and the ground truth.



Our model achieved a validation IoU of 0.94 and
a validation Dice Coefficient of 0.97 after 10 epochs.
These results indicate a high degree of accuracy and
robustness in the model’s ability to delineate the target
regions within the images. The high IoU score reflects
that the predicted and actual segmentation masks have
significant overlap, while the Dice Coefficient further
confirms the precision and recall of our model in seg-
menting the desired regions.

The Figure 18 illustrates the segmentation results
obtained from our model. The images demonstrate the
effectiveness of our approach in accurately segmenting
the target areas, showcasing both the visual and quanti-
tative performance of our model.

VI. CONCLUSION
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Fig. 18: Visual representation of segmentation results from our model. The images show the original images (first
row) ground truth segmentation masks (second row), the predicted masks (third row)
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